上传者: 38661939
|
上传时间: 2022-05-19 00:15:20
|
文件大小: 35KB
|
文件类型: PDF
今天遇到的问题是,要将一份csv数据读入dataframe,但某些列中含有NA值。对于这些列来说,NA应该作为一个有意义的level,而不是缺失值,但read_csv函数会自动将类似的缺失值理解为缺失值并变为NaN。
看pandas文档中read_csv函数中这两个参数的描述,默认会将’-1.#IND’, ‘1.#QNAN’, ‘1.#IND’, ‘-1.#QNAN’, ‘#N/A N/A’,’#N/A’, ‘N/A’, ‘NA’, ‘#NA’, ‘NULL’, ‘NaN’, ‘-NaN’, ‘nan’, ‘-nan’, ”转换为NaN,且na_values参数还支持定义另外的应处理为缺失值的