em算法matlab代码-Machine-Learning-and-Data-Science:算法在BishopPRML书中的应用

上传者: 38661100 | 上传时间: 2021-05-26 18:02:50 | 文件大小: 44.19MB | 文件类型: ZIP
em算法matlab代码机器学习与数据科学 算法在Bishop的PRML书中的应用。 在计算机视觉中,对象识别是影响很大的标准机器学习问题。 在整个存储库中,Matlab中的“手写代码”实现了几种基本算法。 算法被应用于多个数据集。 比较了算法的复杂度,并讨论了算法的问题。 在中提到了数据库。 可以找到项目报告。 论文 数据 算法 正则线性回归 高斯核回归 高斯过程 支持向量机 极限学习机 稀疏表示 使用马尔可夫随机场的图像去噪 使用SP / MS算法进行图像降噪 电磁混合模型 在最终报告中使用多重交叉验证对每种算法进行了评估,并找到了最佳的正则化常数。 对于在1 dimentional data上测试的算法的简单版本,请检查。 有关real datasets的培训代码和测试代码,请参见。 项目报告 该报告是使用Latex实施的。 有关底下的源代码,请发送电子邮件至。

文件下载

资源详情

[{"title":"( 61 个子文件 44.19MB ) em算法matlab代码-Machine-Learning-and-Data-Science:算法在BishopPRML书中的应用","children":[{"title":"Machine-Learning-and-Data-Science-master","children":[{"title":"main.m <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"Assignment5","children":[{"title":"img_energy.m <span style='color:#111;'> 218B </span>","children":null,"spread":false},{"title":"noise","children":[{"title":"test.m <span style='color:#111;'> 96B </span>","children":null,"spread":false},{"title":"csfmat.m <span style='color:#111;'> 471B </span>","children":null,"spread":false},{"title":"test_awgn.m <span style='color:#111;'> 131B </span>","children":null,"spread":false},{"title":"test_equalization.m <span style='color:#111;'> 75B </span>","children":null,"spread":false},{"title":"test_blur.m <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"test_sharpening.m <span style='color:#111;'> 120B </span>","children":null,"spread":false},{"title":"test_median.m <span style='color:#111;'> 71B </span>","children":null,"spread":false},{"title":"csf.m <span style='color:#111;'> 551B </span>","children":null,"spread":false},{"title":"csffun.m <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"test_resize.m <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"WPSNR.m <span style='color:#111;'> 966B </span>","children":null,"spread":false},{"title":"PSNR.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"test_jpeg.m <span style='color:#111;'> 140B </span>","children":null,"spread":false}],"spread":false},{"title":"mrf_denoise.m <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"deri_update.m <span style='color:#111;'> 332B </span>","children":null,"spread":false},{"title":"lena.bmp <span style='color:#111;'> 257.05KB </span>","children":null,"spread":false},{"title":"icm_update.m <span style='color:#111;'> 661B </span>","children":null,"spread":false},{"title":"pixel_energy.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"Assignment6","children":[{"title":"max_sum.m <span style='color:#111;'> 533B </span>","children":null,"spread":false}],"spread":true},{"title":"MLDS_REPORT.pdf <span style='color:#111;'> 1.66MB </span>","children":null,"spread":false},{"title":"Assignment1","children":[{"title":"linear_inference.m <span style='color:#111;'> 128B </span>","children":null,"spread":false},{"title":"gradientDescentMulti.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"et.csv <span style='color:#111;'> 21.05MB </span>","children":null,"spread":false},{"title":"vw.csv <span style='color:#111;'> 64.78KB </span>","children":null,"spread":false},{"title":"ar.csv <span style='color:#111;'> 26.33MB </span>","children":null,"spread":false},{"title":"ca.csv <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"sc.csv <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"st.csv <span style='color:#111;'> 2.08MB </span>","children":null,"spread":false}],"spread":true},{"title":"Assignment2","children":[{"title":"gaussian_kernel.m <span style='color:#111;'> 109B </span>","children":null,"spread":false},{"title":"gram_matrix.m <span style='color:#111;'> 245B </span>","children":null,"spread":false}],"spread":true},{"title":"Assignment4","children":[{"title":"basis_pursuit.m <span style='color:#111;'> 365B </span>","children":null,"spread":false},{"title":"sub_pursuit.m <span style='color:#111;'> 413B </span>","children":null,"spread":false},{"title":"orth_match.m <span style='color:#111;'> 367B </span>","children":null,"spread":false}],"spread":true},{"title":"main","children":[{"title":"main.m <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"3. Gaussion Process.m <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"normalEqn.m <span style='color:#111;'> 273B </span>","children":null,"spread":false},{"title":"lena_denoise1.fig <span style='color:#111;'> 909.43KB </span>","children":null,"spread":false},{"title":"featureNormalize.m <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"ExtendedYaleB.mat <span style='color:#111;'> 8.94MB </span>","children":null,"spread":false},{"title":"OMP_BP.jpg <span style='color:#111;'> 136.37KB </span>","children":null,"spread":false},{"title":"st.mat <span style='color:#111;'> 451.70KB </span>","children":null,"spread":false},{"title":"Norm.m <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"data_pre.m <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"computeCostMulti.m <span style='color:#111;'> 719B </span>","children":null,"spread":false},{"title":"compute_nme.m <span style='color:#111;'> 125B </span>","children":null,"spread":false},{"title":"1. Linear Inference.m <span style='color:#111;'> 5.53KB </span>","children":null,"spread":false},{"title":"4. Extreme Learning Machine.m <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"vw.mat <span style='color:#111;'> 31.63KB </span>","children":null,"spread":false},{"title":"visualizeLearningRate.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"AR.mat <span style='color:#111;'> 10.32MB </span>","children":null,"spread":false},{"title":"svm.m <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"calNMSE.m <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"lena_noise.jpg <span style='color:#111;'> 102.93KB </span>","children":null,"spread":false},{"title":"compute_accuracy.m <span style='color:#111;'> 214B </span>","children":null,"spread":false},{"title":"2. Gaussion Kernel Regression.m <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false}],"spread":false},{"title":"Assignment3","children":[{"title":"gaussian_process_gram.m <span style='color:#111;'> 543B </span>","children":null,"spread":false},{"title":"gaussian_process_kernel.m <span style='color:#111;'> 173B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"EQ2415_Pointer.pdf <span style='color:#111;'> 132.23KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明