基于注意力机制和卷积神经网络的低照度图像增强

上传者: 38659374 | 上传时间: 2021-05-02 15:42:01 | 文件大小: 9.92MB | 文件类型: PDF
为了提高低照度图像的清晰度和避免颜色失真,提出了基于注意力机制和卷积神经网络(CNN)的低照度图像增强算法,以改善图像质量。首先根据Retinex模型合成训练数据,将原始图像从RGB (red-green-blue)颜色空间变换到HSI (hue-saturation-intensity)颜色空间,然后结合注意力机制和CNN构建A-Unet模型以增强亮度分量,最后将图像从HSI颜色空间变换到RGB颜色空间,得到增强图像。实验结果表明,所提算法可以有效改善图像质量,提高图像的清晰度,避免颜色失真,在合成低照度图像和真实低照度图像的实验中均能取得较好的效果,主观和客观评价指标均优于对比算法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明