论文研究 - 从众包中提取信息:采用贝叶斯,最大似然和最大熵方法的实验测试

上传者: 38657376 | 上传时间: 2024-01-12 17:28:44 | 文件大小: 1.59MB | 文件类型: PDF
一项众包实验,其中,英国广播公司(BBC)电视节目的观看者(“人群”)提交了不倒翁硬币数量的估计值(在第1部分)中显示,服从对数正态分布∧ (m,s2)。 硬币估计实验是适用于众包解决方案的广泛图像分析和对象计数问题的原型。 当前文章(第2部分)的目的是通过贝叶斯方法和最大似然(ML)方法确定∧(m,s2)的位置和比例参数(m,s),并比较结果。 分析的结果之一是通过杰弗里斯的规则解决了有关适当贝叶斯先验问题的问题。 结果表明,贝叶斯分析和ML分析导致位置参数的表达式相同,但尺度参数的表达式不同,这在无限样本量的限制内变得相同。 分析的第二个结果涉及使用样本均值作为不寻求或不知道响应分布的应用程序中人群信息的度量。 在硬币估计实验中,发现样本均值与根据∧(m,s2)计算出的平均硬币数相差很大。 这种不一致性引发了关于样本平均值是否以及在何种条件下提供人群信息的可靠度量的关键问题。 本文通过使用最大熵原理(PME)解决了该问题。 PME产生了一组方程,用于找到与给定的先验信息且仅与该信息一致的最可能的分布。 如果对于指定的样本均值和样本方差没有PME方程的解,则样本均值是不可靠的统计信息

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明