信噪比matlab代码详解-Another-Architecture-for-Perception-Based-Loss:基于感知的另一种架构

上传者: 38656676 | 上传时间: 2022-10-21 10:50:29 | 文件大小: 13.94MB | 文件类型: ZIP
信噪比matlab代码详解评估基于感知的语音增强损失 请在这里找到引用论文和脚本的脚本。 在此存储库中,我们提供用于训练/验证数据准备(包括感知加权滤波器的幅度响应),网络训练/验证(包括感知加权滤波器损耗和基于PESQ的损耗),网络推断,增强的语音波形的源代码。重建和测量。 该代码是基于由Juan Manuel Mart´ın-Donas编写的感知加权滤波器损失项目和PMSQE的项目。 然后由赵浩然进行整合和修改。 介绍 在该项目中,针对语音增强应用评估了两个基准损失和两个基于感知的损失。 将均方误差(MSE)损失和对数功率MSE损失作为基准进行测试。 对感知加权滤波器损失和基于PESQ的损失进行评估和比较。 先决条件 2014a或更高版本 3.6 CPU或NVIDIA GPU + 9.0 7.0.5 入门 安装 安装1.14.0和2.3.1 需要安装一些Python软件包,请在Python脚本中查看详细信息。 安装 数据集 请注意,在本项目中,干净的语音信号是从(降采样到8 kHz)中提取的,而噪声信号是从数据库中提取的。 为了在此项目中运行脚本,假定上述数据库在本地可用。 训练和

文件下载

资源详情

[{"title":"( 638 个子文件 13.94MB ) 信噪比matlab代码详解-Another-Architecture-for-Perception-Based-Loss:基于感知的另一种架构","children":[{"title":"GitHub_mask_dnn_baseline_train.py <span style='color:#111;'> 10.34KB </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明