pcanet的matlab代码-Thesis-On-PCANet:IDC图像分类使用简单的深度学习网络在数据处理步骤中应用称为PCA网络(PC

上传者: 38655484 | 上传时间: 2021-08-31 21:45:16 | 文件大小: 7.06MB | 文件类型: ZIP
pcanet的matlab代码PCANet上的论文 关于“使用 PCANet 进行浸润性导管环瘤 (IDC) 分类”的最后学期论文。 详情如下。 第 1 步:使用“git clone”克隆此 repo 第 2 步:使用“cd /Thesis-On-PCANet/Code”转到代码forler 第 3 步:打开 matlab 并将 matlab 目录更改为项目代码目录。 第 4 步:打开并运行“BreastHisto.m”文件。 对于第 3 步,请按照以下图片进行操作 – 复制此当前目录路径。 就我而言,突出显示的文本是目录路径。 将复制的目录路径粘贴到 matlab 路径/url 字段中,然后按 Enter。 现在从左侧窗口打开 BreastHisto.m 文件并运行它。

文件下载

资源详情

[{"title":"( 44 个子文件 7.06MB ) pcanet的matlab代码-Thesis-On-PCANet:IDC图像分类使用简单的深度学习网络在数据处理步骤中应用称为PCA网络(PC","children":[{"title":"Thesis-On-PCANet-master","children":[{"title":"Report","children":[{"title":"IDC Image Classification Using PCANet.pdf <span style='color:#111;'> 867.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1004B </span>","children":null,"spread":false},{"title":"Code","children":[{"title":"vec.m <span style='color:#111;'> 45B </span>","children":null,"spread":false},{"title":"Utils","children":[{"title":"fsvd.m <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"im2colstep.mexw64 <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"dist_cosine.m <span style='color:#111;'> 859B </span>","children":null,"spread":false},{"title":"im2colstep.c <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"im2col_general.m <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"im2colstep.mexa64 <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"im2colstep.m <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"im2col_mean_removal.m <span style='color:#111;'> 750B </span>","children":null,"spread":false},{"title":"mat2imgcell.m <span style='color:#111;'> 593B </span>","children":null,"spread":false},{"title":"make.m <span style='color:#111;'> 231B </span>","children":null,"spread":false}],"spread":true},{"title":"PCANet_train.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"PCA_FilterBank.m <span style='color:#111;'> 567B </span>","children":null,"spread":false},{"title":"Output","children":[{"title":"output.txt <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false}],"spread":true},{"title":"HashingHist.m <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"BreastData","children":[{"title":"image_name.txt <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"getList.py <span style='color:#111;'> 474B </span>","children":null,"spread":false},{"title":"1000+1000","children":[{"title":"dataset.mat <span style='color:#111;'> 4.38MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"PCANet_FeaExt.m <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"Liblinear","children":[{"title":"libsvmread.mexw64 <span style='color:#111;'> 10.50KB </span>","children":null,"spread":false},{"title":"predict.mexw64 <span style='color:#111;'> 16.00KB </span>","children":null,"spread":false},{"title":"train.mexw64 <span style='color:#111;'> 57.50KB </span>","children":null,"spread":false},{"title":"predict.mexa64 <span style='color:#111;'> 65.28KB </span>","children":null,"spread":false},{"title":"libsvmwrite.mexw64 <span style='color:#111;'> 9.00KB </span>","children":null,"spread":false},{"title":"libsvmwrite.c <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"train.mexa64 <span style='color:#111;'> 66.67KB </span>","children":null,"spread":false},{"title":"libsvmread.mexa64 <span style='color:#111;'> 10.96KB </span>","children":null,"spread":false},{"title":"libsvmwrite.mexa64 <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false},{"title":"predict.c <span style='color:#111;'> 8.43KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"libsvmread.c <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"linear_model_matlab.c <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"linear_model_matlab.h <span style='color:#111;'> 168B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 7.18KB </span>","children":null,"spread":false},{"title":"make.m <span style='color:#111;'> 910B </span>","children":null,"spread":false},{"title":"train.c <span style='color:#111;'> 10.69KB </span>","children":null,"spread":false}],"spread":false},{"title":"PCA_output.m <span style='color:#111;'> 658B </span>","children":null,"spread":false},{"title":"makedataset.m <span style='color:#111;'> 156B </span>","children":null,"spread":false},{"title":"BreastHisto.m <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"Heaviside.m <span style='color:#111;'> 51B </span>","children":null,"spread":false}],"spread":false},{"title":"PCANet code running instructions.pdf <span style='color:#111;'> 354.30KB </span>","children":null,"spread":false},{"title":"Slide","children":[{"title":"1307006-1307018.pptx <span style='color:#111;'> 1.45MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明