决策树缺失值处理

上传者: 38654380 | 上传时间: 2022-03-03 16:24:17 | 文件大小: 49KB | 文件类型: -
决策树 1.决策树缺失值处理 1.1对于训练模型,训练数据部分样本的部分特征值缺失的情况下,做法是:把该数据按比例分成三份数据。可以算出该特征的信息增益。 1.2对于预测数据,C4.5中采用的方法是:测试样本在该属性值上有缺失值,那么就同时探查(计算)所有分支,然后算每个类别的概率,取概率最大的类别赋值给该样本。 1.3测试样本属性也有缺失值那要怎么办? 有论文里讨论过: 2.决策树应用的案例: import csv from sklearn.feature_extraction import DictVectorizer from sklearn import preprocessing

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明