基于酉变换和稀疏贝叶斯学习的离格DOA估计

上传者: 38653085 | 上传时间: 2021-03-23 21:35:31 | 文件大小: 714KB | 文件类型: PDF
针对传统稀疏贝叶斯学习算法(SBL)在解决低信噪比条件下信号到达角(DOA)估计有效性的问题,提出基于酉变换的实数域稀疏贝叶斯学习(RV-OGSBL)的快速离格DOA估计方法。该方法首先对均匀线阵的实际接收信号通过构造增广矩阵作为 DOA 估计的处理信号,然后利用酉变换将估计模型从复数域转化到实数域,进一步在实数域下将离格模型与稀疏贝叶斯学习算法相结合迭代处理实现 DOA 估计,获得较高的估计精度。仿真结果表明,RV-OGSBL 方法不仅能保持传统 SBL 算法的性能,而且显著降低了计算复杂度。在低信噪比和低快拍数的情况下,算法运行时间降低约50%,表明该方法是一种快速的DOA估计算法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明