上传者: 38652058
|
上传时间: 2022-03-25 20:25:37
|
文件大小: 1.42MB
|
文件类型: -
图像盲去运动模糊一直是计算机视觉领域的一个经典问题,它的目的是在模糊核未知的情况下恢复清晰图像。考虑到更大的感受野以及多尺度信息对恢复清晰图像中的全局信息以及局部细节信息具有重要作用,因此提出的方法对DeblurGAN方法进行改进,提出一种基于条件生成对抗网络的GR-DeblurGAN(granular residual DeblurGAN)的单图像盲去运动模糊方法,采用细粒度残差模块(granular residual block)作为骨干网络,以此在不增加参数量的情况下,扩大感受野,获得多尺度信息。最后在两个广泛使用的数据集:GoPro数据集以及Kohler数据集上进行算法性能评估,并与代表性算法进行对比。从实验结果可以看出,提出的方法改进效果明显,并且在计算开销上面优于其他算法。