高分位数数据的分位数回归森林的扩展

上传者: 38651929 | 上传时间: 2022-04-29 20:10:19 | 文件大小: 358KB | 文件类型: PDF
本文描述了最新的回归技术随机森林分位数回归森林(QRF)的新扩展,以应用于具有数千个特征的高维数据。 我们提出了一种新的子空间采样方法,该方法从两个单独的特征集中随机抽取一个特征子集,一个特征集包含重要特征,另一个特征集包含次要特征。 这两个功能部件集基于功能部件的重要性度量对输入数据进行分区。 通过使用特征置换产生分区原始重要性特征评分首先进行,然后应用p值评估将重要特征与次要特征分开。 新的子空间采样方法能够从袋装样本数据生成树,而回归误差较小。 对于点回归,我们从两个分位数Q0:05和Q0:95之间的范围中选择Y的预测值,而不是回归随机森林中使用的条件均值。我们的实验结果表明,具有这些扩展的随机森林要优于回归随机森林和分位数回归森林减少均方根残差。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明