基于模拟退火算法的改进极限学习机

上传者: 38651812 | 上传时间: 2021-11-18 12:17:29 | 文件大小: 1.13MB | 文件类型: -
传统的极限学习机作为一种有监督的学习模型,任意对隐藏层神经元的输入权值和偏置进行赋值,通过计算隐藏层神经元的输出权值完成学习过程.针对传统的极限学习机在数据分析预测研究中存在预测精度不足的问题,提出一种基于模拟退火算法改进的极限学习机.首先,利用传统的极限学习机对训练集进行学习,得到隐藏层神经元的输出权值,选取预测结果评价标准.然后利用模拟退火算法,将传统的极限学习机隐藏层输入权值和偏置视为初始解,预测结果评价标准视为目标函数,通过模拟退火的降温过程,找到最优解即学习过程中预测误差最小的极限学习机的隐藏层神经元输入权值和偏置,最后通过传统的极限学习机计算得到隐藏层输出权值.实验选取鸢尾花分类数据和波士顿房价预测数据进行分析.实验发现与传统的极限学习机相比,基于模拟退火改进的极限学习机在分类和回归性能上都更优.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明