[{"title":"( 16 个子文件 47KB ) 高斯牛顿迭代法matlab代码-Numerical_analysis:数值分析","children":[{"title":"Numerical_analysis-master","children":[{"title":"HW_1","children":[{"title":"HW_1.ipynb <span style='color:#111;'> 101.55KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"HW_1-checkpoint.ipynb <span style='color:#111;'> 111.96KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"HW_4","children":[{"title":"Trapezoidal_Rule.m <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"centered_differetiation.m <span style='color:#111;'> 232B </span>","children":null,"spread":false},{"title":"backward_differetiation.m <span style='color:#111;'> 232B </span>","children":null,"spread":false},{"title":"Simpsons_3_8.m <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"finite_forward_differetiation.m <span style='color:#111;'> 253B </span>","children":null,"spread":false},{"title":"Simpsons_1_3.m <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"Gauss_quadrature.m <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"Solution.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"func.m <span style='color:#111;'> 839B </span>","children":null,"spread":false}],"spread":true},{"title":"HW_2","children":[{"title":"Naive_gauss_elimination.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"Gauss_Seidal_Method.m <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"Jacobi_Method.m <span style='color:#111;'> 912B </span>","children":null,"spread":false}],"spread":true},{"title":"HW_3","children":[{"title":"InterPolation.m <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 646B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]