上传者: 38642636
|
上传时间: 2022-02-14 00:41:48
|
文件大小: 395KB
|
文件类型: -
本文来自于csdn,本文章主要介绍了深度学习与强化学习结合起来从而实现从感知(Perception)到动作(Action)的端对端(End-to-end)学习的一种全新的算法。原因:在普通的Q-learning中,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实。通常做法是把Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作。如下式,通过更新参数θθ使Q函数逼近最优Q值而深度神经网络可以自动提取复杂特征,因此,面对高维且连续的状态使用深度神经网络最合适不过了。DRL是将深度学习(DL