改进的卷积神经网络对地震数据进行去噪的方法

上传者: 38642369 | 上传时间: 2021-05-29 21:31:58 | 文件大小: 10.94MB | 文件类型: PDF
针对采用全卷积神经网络去除地震数据随机噪声方法中遇到的计算量大、容易出现过拟合等问题,提出了一种基于LeNet-5改进的卷积神经网络对地震数据进行去噪的方法。除去输入层,该方法包含2个卷积层、2个池化层和1个全输出层。采用误差最小的实验试选法,首先在单层卷积网络中确定第1个卷积层和池化层的参数,基于第1层参数确定第2个卷积层和池化层的参数, 最后采用12000个大小为32×32的地震数据训练LeNet-5,采用1000个相同大小、相同信噪比的地震数据测试系统。Marousi2叠前和叠后地震数据去噪实验均表明,本文方法对水平和倾斜同相轴地震数据的去噪效果较好。与奇异值分解算法、BP(Back Propagation)算法以及文献[9]中算法相比,本文方法能更好地去除噪声。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明