gmm的matlab代码-kgmm_interpolation:k个分量GMM的流形上的插值

上传者: 38642369 | 上传时间: 2023-04-10 16:36:33 | 文件大小: 191KB | 文件类型: ZIP
gmm的matlab代码k个分量GMM的流形上的插值 Hyunwoo J.Kim,Nagesh Adluru,Monami Banerjee,Baba C.Vemuri,Vikas Singh, k分量高斯混合模型(GMM)流形的插值,在国际计算机视觉会议(ICCV)上,2015年12月。 这是MATLAB中用于k -GMM插值的最小源代码。 请看一下演示html。 此外,演示脚本“ DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION”在根目录中也可用。

文件下载

资源详情

[{"title":"( 72 个子文件 191KB ) gmm的matlab代码-kgmm_interpolation:k个分量GMM的流形上的插值","children":[{"title":"kgmm_interpolation-master","children":[{"title":"contributors.txt <span style='color:#111;'> 58B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"html","children":[{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION_02.png <span style='color:#111;'> 15.29KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION_03.png <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION_01.png <span style='color:#111;'> 16.50KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION.png <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION_05.png <span style='color:#111;'> 14.75KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION.html <span style='color:#111;'> 15.46KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION_04.png <span style='color:#111;'> 14.29KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION_eq13346360939661603444.png <span style='color:#111;'> 8.56KB </span>","children":null,"spread":false},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION_eq11695167239558615666.png <span style='color:#111;'> 376B </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"MexCode","children":[{"title":"ComputeInnderProductGMM.c <span style='color:#111;'> 11.15KB </span>","children":null,"spread":false},{"title":"ComputeInnderProductGMM.mexa64 <span style='color:#111;'> 61.44KB </span>","children":null,"spread":false},{"title":"ComputeInnderProductGaussian.c <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false},{"title":"Check3DArrayAccess.c <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"Check3DArrayAccess.mexa64 <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"ComputeInnderProductGMM.m <span style='color:#111;'> 369B </span>","children":null,"spread":false},{"title":"InnderProductGMM.m <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ComputeInnderProductGaussian.mexa64 <span style='color:#111;'> 58.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"GD","children":[{"title":"dfds.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"df_closest_fast.m <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"gd_gmms_closest_fast.m <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"gd_gmms.m <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"dfdpi.m <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"dfdm.m <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"visualization","children":[{"title":"mylinspace.m <span style='color:#111;'> 306B </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"myplotgmm1D.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"ezcongmm2d.m <span style='color:#111;'> 108B </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"EM","children":[{"title":"em_rgpmm.m <span style='color:#111;'> 9.46KB </span>","children":null,"spread":false},{"title":"em_gmm_closest_full.m <span style='color:#111;'> 5.69KB </span>","children":null,"spread":false},{"title":"tuning_fixvol.m <span style='color:#111;'> 12.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"common","children":[{"title":"proj_M_spd.m <span style='color:#111;'> 887B </span>","children":null,"spread":false},{"title":"plotGMM.m <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"innerprodGaussian.m <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"randspd.m <span style='color:#111;'> 383B </span>","children":null,"spread":false},{"title":"getaffinetransGMM.m <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"innerprodGMM.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"getaffinetransGauss.m <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"l2normGMM.m <span style='color:#111;'> 391B </span>","children":null,"spread":false},{"title":"l2ndistGMM.m <span style='color:#111;'> 365B </span>","children":null,"spread":false},{"title":"struct2objGMM.m <span style='color:#111;'> 302B </span>","children":null,"spread":false},{"title":"unitvec.m <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"ngeodistGMM.m <span style='color:#111;'> 405B </span>","children":null,"spread":false},{"title":"xentropyGMMsim.m <span style='color:#111;'> 325B </span>","children":null,"spread":false},{"title":"pdfpatch.m <span style='color:#111;'> 504B </span>","children":null,"spread":false},{"title":"l2distGaussian.m <span style='color:#111;'> 668B </span>","children":null,"spread":false},{"title":"crossentropy.m <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"l2meanGMMs.m <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"l2normalizeGMM.m <span style='color:#111;'> 279B </span>","children":null,"spread":false},{"title":"isspd.m <span style='color:#111;'> 835B </span>","children":null,"spread":false},{"title":"affinetransGMM.m <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"obj2structGMMs.m <span style='color:#111;'> 457B </span>","children":null,"spread":false},{"title":"crossentropyGMMs.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"KLdivGMMsim.m <span style='color:#111;'> 467B </span>","children":null,"spread":false},{"title":"initkgmm_diag.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"l2distGMMs.m <span style='color:#111;'> 797B </span>","children":null,"spread":false},{"title":"myisreal.m <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"getloglikelihood.m <span style='color:#111;'> 401B </span>","children":null,"spread":false},{"title":"nl2distGMM.m <span style='color:#111;'> 379B </span>","children":null,"spread":false},{"title":"diag3D.m <span style='color:#111;'> 640B </span>","children":null,"spread":false},{"title":"l2distGMM.m <span style='color:#111;'> 913B </span>","children":null,"spread":false},{"title":"obj2structGMM.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"covtype.m <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"gausskde.m <span style='color:#111;'> 609B </span>","children":null,"spread":false}],"spread":false},{"title":"random","children":[{"title":"gmmrand.m~ <span style='color:#111;'> 216B </span>","children":null,"spread":false},{"title":"randgmm.m <span style='color:#111;'> 744B </span>","children":null,"spread":false}],"spread":true},{"title":"demo","children":[{"title":"randGMM.m <span style='color:#111;'> 388B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"DEMO_MAIN_ICCV2015_KGMM_INTERPOLATION.m <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 729B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明