序贯蒙特卡洛matlab代码-biips:用于交互粒子系统的贝叶斯推理的C++库

上传者: 38641561 | 上传时间: 2022-08-22 16:08:15 | 文件大小: 5.4MB | 文件类型: ZIP
序贯蒙特卡洛matlab代码比比斯 版本:0.11.0 上次修改时间:2017-01-31 维护者: 执照:GPL-3 网站: Biips是用于与相互作用的粒子系统(也称为顺序蒙特卡洛(SMC)方法)进行贝叶斯推理的通用软件。 由于其自动的“黑匣子”推理引擎,它旨在将这些方法的使用推广给非统计学家和学生。 它借鉴了BUGS / JAGS软件,该软件广泛用于贝叶斯统计,具有图形模型的统计建模以及与描述相关的语言。 语境 贝叶斯推断包括在给定一组观测值的情况下,近似未知参数相关的条件概率定律。 以上述公式为基础,可以解决许多问题,例如非监督分类,过滤等。 潜在概率定律虽然对于一般情况无法通过分析方式进行计算,但是可以使用蒙特卡洛·马尔可夫链(MCMC)方法进行近似。 由于BUGS软件和WinBUGS图形界面,这些方法在贝叶斯推理中很受欢迎。 由于最近的研究成果不断涌现,因此与经典的MCMC方法相比,基于粒子的交互算法(又称为顺序蒙特卡洛(SMC)方法,其中最常见的实现是粒子滤波器)被证明具有优越的性能。 此外,交互粒子算法非常适合于动态估计问题,例如在过滤,跟踪或分类问题中遇到的问题。 它

文件下载

资源详情

[{"title":"( 437 个子文件 5.4MB ) 序贯蒙特卡洛matlab代码-biips:用于交互粒子系统的贝叶斯推理的C++库","children":[{"title":"biips_info.IN <span style='color:#111;'> 38B </span>","children":null,"spread":false},{"title":"CMakeLists.txt <span style='color:#111;'> 198B </span>","children":null,"spread":false},{"title":"build_biips.sh <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"hmm_1d_nonlin_gauss.10.cfg <span style='color:#111;'> 155.34KB </span>","children":null,"spread":false},{"title":"hmm_1d_lin_gauss.03.cfg <span style='color:#111;'> 309.52KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明