上传者: 38640984
|
上传时间: 2021-07-15 11:01:32
|
文件大小: 780KB
|
文件类型: PDF
在故障诊断时,需要从多方面获得关于同一对象的多维信息并进行融合,才能对设备进行更可靠更准确地诊断,以求得最佳诊断结果。以齿轮箱故障作为研究对象,提出了一种基于D-S证据理论和BP神经网络相结合的信息融合诊断方法,并进行了验证。首先利用BP神经网络对测量数据进行分析诊断,最后用D-S理论对诊断结果进行融合,结果满足需求,从而证明了D-S理论和BP神经网络相结合的诊断方法的实效性。