迫零均衡matlab代码-blind-digital-demodulation:使用神经网络和高阶统计的盲数字调制识别

上传者: 38640984 | 上传时间: 2021-09-23 19:32:40 | 文件大小: 2.43MB | 文件类型: ZIP
零零均衡matlab代码使用神经网络和高阶统计的盲数字调制识别 最终项目 - 人工智能课程 (ECSE 526) - 麦吉尔 - 2016 年秋季 有关系统型号、配置和结果的更多详细信息,请参阅 和 。 指示 在文件夹中,您应该能够找到几个功能来执行不同的通信系统和性能评估任务。 每个函数都以这样的方式命名,它提供了一个关于它执行什么的清晰概念,并对其开始详细说明。 创建的神经网络命名为 NNxxx.m,其中 xxx 根据 SNR 训练级别和它执行的任务而变化。 例如,要测试以 15dB 训练的 NN,您可以执行以下操作: 使用 modulateSignal.m 生成和调制信号 执行空时编码:alamoutiSpaceTimeCoding.m 通过通道发送得到接收到的噪声调制信号:receivedEqualizedModulatedSignal.m 均衡接收信号zer forcing:coherent_ZF_receiver.m 计算特征: featuresComputationModulatedSignal.m 将它们传递给神经网络 NN15dB,你会得到一个长度为 6 的向量。 最

文件下载

资源详情

[{"title":"( 40 个子文件 2.43MB ) 迫零均衡matlab代码-blind-digital-demodulation:使用神经网络和高阶统计的盲数字调制识别","children":[{"title":"blind-digital-demodulation-master","children":[{"title":"Report.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"Matlab_code","children":[{"title":"NN_QAM_3dB.m <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"NN15dB.m <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"trainingMatricesGeneration.m <span style='color:#111;'> 570B </span>","children":null,"spread":false},{"title":"coherentMLreceiver.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"testPerformCascade.m <span style='color:#111;'> 749B </span>","children":null,"spread":false},{"title":"testPerform.m <span style='color:#111;'> 825B </span>","children":null,"spread":false},{"title":"modulateSignal.m <span style='color:#111;'> 606B </span>","children":null,"spread":false},{"title":"featuresComputationModulatedSignal.m <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"test2.m <span style='color:#111;'> 421B </span>","children":null,"spread":false},{"title":"NN_PSKorQAM3dB.m <span style='color:#111;'> 3.81KB </span>","children":null,"spread":false},{"title":"marixGen.m <span style='color:#111;'> 951B </span>","children":null,"spread":false},{"title":"receivedEqualizedModulatedSignal.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"featuresNoisyModulatedSignal.m <span style='color:#111;'> 648B </span>","children":null,"spread":false},{"title":"test1.m <span style='color:#111;'> 491B </span>","children":null,"spread":false},{"title":"NNn9.m <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"input_matrices_600.mat <span style='color:#111;'> 410.79KB </span>","children":null,"spread":false},{"title":"generateMatrixDiffSNR.m <span style='color:#111;'> 315B </span>","children":null,"spread":false},{"title":"NN3dB.m <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"test.m <span style='color:#111;'> 410B </span>","children":null,"spread":false},{"title":"coherent_ZF_receiver.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"NNcascade.m <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"Figures","children":[{"title":"untitled_n9dB.jpg <span style='color:#111;'> 50.29KB </span>","children":null,"spread":false},{"title":"untitled_3dB.jpg <span style='color:#111;'> 49.49KB </span>","children":null,"spread":false},{"title":"untitledCascade.fig <span style='color:#111;'> 36.27KB </span>","children":null,"spread":false},{"title":"untitled_n9dB.fig <span style='color:#111;'> 37.83KB </span>","children":null,"spread":false},{"title":"untitled.fig <span style='color:#111;'> 29.91KB </span>","children":null,"spread":false},{"title":"untitled_15dB.jpg <span style='color:#111;'> 48.33KB </span>","children":null,"spread":false},{"title":"untitled_3dB.fig <span style='color:#111;'> 37.81KB </span>","children":null,"spread":false},{"title":"untitled_15dB.fig <span style='color:#111;'> 35.97KB </span>","children":null,"spread":false},{"title":"desktop.ini <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"untitled3.fig <span style='color:#111;'> 36.22KB </span>","children":null,"spread":false},{"title":"untitled2.fig <span style='color:#111;'> 33.58KB </span>","children":null,"spread":false},{"title":"untitledCascade.jpg <span style='color:#111;'> 29.42KB </span>","children":null,"spread":false}],"spread":false},{"title":"testCascade.m <span style='color:#111;'> 609B </span>","children":null,"spread":false},{"title":"NN_PSK_3dB.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"alamoutiSpaceTimeCoding.m <span style='color:#111;'> 672B </span>","children":null,"spread":false}],"spread":false},{"title":"Readme.md <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"Presentation.pdf <span style='color:#111;'> 794.81KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明