粒子群算法求解最大值问题详解(附python代码)

上传者: 38639471 | 上传时间: 2021-09-01 22:07:08 | 文件大小: 59KB | 文件类型: PDF
文章目录粒子群算法(PSO)代码实现1、导入需要的库2、设置参数3、适应度函数4、初始化粒子群5、迭代更新粒子群 粒子群算法(PSO) PSO 通过模拟鸟群的捕食行为来求取最优解。 假设一群鸟在随机搜索食物。在这个区域里只有一块食物(对应着最优解)。所有的鸟都不知道食物的具体位置,但是它们可以判断自身与食物的大致距离,即通过 fit 值判断与最优解的距离。那么找到食物的最优策略就是搜寻目前离食物最近的鸟的周围区域。 PSO 中,问题的每个解都是搜索空间中的一只“鸟”。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值,并且所有的粒子都具有速度和位置两个属性。 在每一次迭代中,粒子

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明