基于FPGA的递归神经网络加速器的研究进展

上传者: 38638312 | 上传时间: 2022-07-18 14:07:07 | 文件大小: 1.39MB | 文件类型: PDF
递归神经网络(RNN)近些年来被越来越多地应用在机器学习领域,尤其是在处理序列学习任务中,相比CNN等神经网络性能更为优异。但是RNN及其变体,如LSTM、GRU等全连接网络的计算及存储复杂性较高,导致其推理计算慢,很难被应用在产品中。一方面,传统的计算平台CPU不适合处理RNN的大规模矩阵运算;另一方面,硬件加速平台GPU的共享内存和全局内存使基于GPU的RNN加速器的功耗比较高。FPGA 由于其并行计算及低功耗的特性,近些年来被越来越多地用来做 RNN 加速器的硬件平台。对近些年基于FPGA的RNN加速器进行了研究,将其中用到的数据优化算法及硬件架构设计技术进行了总结介绍,并进一步提出了未来研究的方向。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明