基于YOLOv3模型的实时行人检测改进算法

上传者: 38638004 | 上传时间: 2021-11-09 12:59:21 | 文件大小: 765KB | 文件类型: -
针对当前行人检测方法实时性和精度不能同时兼顾的问题,提出基于YOLOv3改进的实时行人检测算法。本算法对YOLOv3模型进行改进,融入标签平滑,增加多个尺度检测,并采用k-means算法得到模型中的anchors值,实现自动学习行人特征。通过在Caltech数据集上测试结果表明,改进后的YOLOv3行人检测算法mAP(mean Average Precision)达到了91.68%。在分辨率1 920×1 080的视频下,运行速度超过每秒40帧,满足实时行人检测的需求。在Daimler、INRIA行人检测数据集测试结果表明,该改进模型同样具有良好的性能,从而验证该模型具有良好的鲁棒性和泛化能力。

文件下载

评论信息

  • weixin_48200452 :
    竟然是论文?!也不说明是论文!
    2021-11-09

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明