基于卷积神经网络局部特征融合的人脸表情识别

上传者: 38635975 | 上传时间: 2021-10-31 14:42:24 | 文件大小: 4.13MB | 文件类型: -
为提高人脸表情分类的识别率和实时性,提出一种基于卷积神经网络(CNN)局部特征融合的人脸表情识别方法。首先,构建CNN模型,学习眼睛、眉毛、嘴巴3个局部区域的局部特征;然后,将局部特征送入到支持向量机(SVM)多分类器中获取各类特征的后验概率;最后,通过粒子群寻优算法优化各特征的最优融合权值,实现正确率最优的决策级融合,完成表情分类。实验表明,本文方法在CK+和JAFFE数据库的平均识别率分别达到了94.56%和97.08%,与其他识别方法相比,本文方法性能优越,能提高算法的识别率和稳健性,同时保证了算法的实时性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明