上传者: 38633897
|
上传时间: 2024-05-14 20:15:23
|
文件大小: 172KB
|
文件类型: PDF
一、什么是感知机模型?
感知机是线性分类的二分类模型,输入为实例的特征向量,输出为实例的类别,分别用1和-1表示。感知机将输入空间(特征空间)中的实例划分为正负两类分离的超平面,旨在求出将训练集进行线性划分的超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得最优解。感知机是神经网络和支持向量机的基础。
二、感知机模型
感知机的函数公式为:f(x)=sign(w⋅x+b)f(x)=sign(w·x+b)f(x)=sign(w⋅x+b)
其中www和bbb为感知机模型参数,w∈Rnw\in R^nw∈Rn叫做权值或者权值向量,b∈Rb\in Rb∈R叫做偏差,w⋅xw