使用监督机器学习算法识别心血管疾病的风险-研究论文

上传者: 38632488 | 上传时间: 2022-05-10 16:13:02 | 文件大小: 962KB | 文件类型: PDF
在当今时代,检测和预测任何疾病非常重要,为什么要这样做,因为每个人都忙于日常生活,没有人关心自己的健康,也没有人遵循适当的饮食,这种鲁leads的行为会导致多种疾病。 在所有疾病中,心脏病是一种非常严重的疾病。 心脏病的主要原因之一是吸烟,饮酒和缺乏运动等。WHO(世界卫生组织)记录说,有3100万人死于CVD(心血管疾病)。 因此,有必要在心脏病发作之前对心脏病进行预测。 有大量来自医疗保健行业和医院的数据,但是像医生或医学专家这样的人却无法分析这些数据,因此机器学习可以分析大量数据并提供更好的结果。 过去几年的研究人员发现,机器学习在分析数据方面非常有效,因此我们提出了几种机器学习算法,例如人工神经网络(ANN),随机森林(RF),逻辑回归,K近邻(KNN) ),朴素贝叶斯(NB),支持向量机(SVM),决策树(DT)等来预测心脏病。 并且在本文中,我们获得了各种机器学习算法的结果,并进行了比较。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明