使用深度学习分类进行故障检测:此演示展示了如何准备、建模和部署基于深度学习 LSTM 的分类算法来识别状态或输出-matlab开发

上传者: 38631197 | 上传时间: 2023-03-11 14:40:05 | 文件大小: 18.09MB | 文件类型: ZIP
此演示展示了信号数据示例的完整深度学习工作流程。 我们展示了如何准备、建模和部署基于深度学习 LSTM 的分类算法来识别机械空气压缩机的状况或输出。 我们展示了如何执行深度学习工作流程的以下部分的示例: 第 1 部分 - 数据准备第 2 部分 - 建模第 3 部分 - 部署 该演示是作为 MATLAB 项目实现的,需要您打开该项目才能运行它。 该项目将管理您需要的所有路径和快捷方式。 第一次运行项目时还需要一个重要的数据副本。 第 1 部分 - 数据准备本示例说明如何提取将用作LSTM深度学习网络输入的声学特征集。 跑步: 打开 MATLAB 项目 Aircompressorclassification.prj 打开并运行 Part01_DataPreparation.mlx 第 2 部分 - 建模此示例展示了如何训练 LSTM 网络对包括健康和不健康信号的多种操作模式进行分类

文件下载

资源详情

[{"title":"( 1 个子文件 18.09MB ) 使用深度学习分类进行故障检测:此演示展示了如何准备、建模和部署基于深度学习 LSTM 的分类算法来识别状态或输出-matlab开发","children":[{"title":"github_repo.zip <span style='color:#111;'> 18.19MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明