上传者: 38630697
|
上传时间: 2021-08-13 14:32:30
|
文件大小: 938KB
|
文件类型: PDF
为提高最小二乘支持向量机(LSSVM)预测模型的精度,准确预测煤炭开采成本.利用改进的自适应粒子群算法(IAPSO)的全局搜索能力,寻找LSSVM最优的惩罚因子r和高斯核函数的半径σ,提出一种IAPSO-LSSVM预测算法.在分析影响煤炭开采成本的空间因素、时间因素和定性因素的基础上,构建基于IAPSO-LSSVM的煤炭开采成本预测模型,并以TF煤业集团数据进行仿真实验.结果表明:与LSSVM、PSO-LSSVM算法相比,该模型预测效果更好.