CNN-LSTM混合模型用于台风形成预报

上传者: 38628953 | 上传时间: 2022-01-04 13:05:11 | 文件大小: 4.32MB | 文件类型: -
台风是一种极端天气事件,每年夏天都会对沿海地区的城市经济造成重大损失。 预测台风的形成和强度以对台风灾害进行预警是非常重要的。 传统的基于流体理论的数值预报模型仍然很难准确地预测台风强度。 一些研究尝试使用机器倾斜方法来预测台风的形成和强度,但是他们并未考虑台风形成变量之间的时空关系。 在这里,我们提出了一个混合的CNNLSTM模型来学习大气和海洋变量的时空相关性。 我们的CNN-LSTM模型引入了3D卷积神经网络(3DCNN)和2D卷积神经网络(2DCNN),以了解台风形成特征之间的空间关系。 我们利用LSTM来学习台风路径中特征的时间序列关系。 在三个数据集上进行的广泛实验表明,我们的CNN-LSTM混合模型优于现有方法,包括许多官方组织使用的传统数值预测模型,统计预测方法和基于机器学习的方法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明