考虑用户间消极相似性的排序推荐算法

上传者: 38628647 | 上传时间: 2021-10-07 15:35:45 | 文件大小: 1.03MB | 文件类型: -
由于用户评分标准存在差异,基于打分的协同过滤推荐算法在近邻选择过程中存在误差。针对以上问题,提出考虑用户间消极相似性的排序推荐算法 (NS-TauRank),该算法不经过对拟推荐项目的预测评分过程。定 义 DP函 数 表 示 项目对相关属性,充分利用用户间的消极相似性,即相似性为负的用户之间的爱好相反,改进目标用户的近邻选择过程,采用舒尔茨方法进行偏好融合,优化目标用户拟推荐项目的排序。在 Eachmovie和 movielens数据集上对改进算法进行验证,以 NDCG作为评价函数,验证结果表明,该算法在两个数据集上的 NDCG@1-2值较对比算法有4%-7%的提高,产生了更可靠的拟推荐序列。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明