matlabkinect代码-CVPR2019:偏振深度+RGB立体对

上传者: 38628310 | 上传时间: 2025-10-14 19:56:27 | 文件大小: 33.28MB | 文件类型: ZIP
matlab kinect 代码偏振深度 + RGB 立体对 这个存储库是论文的实现。 它包含两个部分: 1. 使用图形模型从偏振图像中校正法线。 2. 用论文第 6 节描述的线性方程估计最终深度。 这两部分构成了论文的流水线,但它们可以独立运行。 例如,如果您有来自其他来源(即 kinect、多视图)的粗略深度图,您仍然可以通过管道运行代码。 或者您有一个不是来自我们的“法线校正”的校正法线贴图,您可以跳转到“深度估计”,但可以指定其他参数。 请参阅“数据”文件夹。 如果您有任何疑问,请随时与我联系。 正常校正 这部分是在python2.7下用OpenGM库实现的,它需要一个corse深度图(理论上,它可以获取任何深度图的来源,只要它与偏振图像对齐即可。在我们的论文中,粗深度来自立体重建)和偏振图像作为输入,输出是根据偏振信息校正的法线和估计的镜面反射掩模。 深度估计 这部分在Matlab下实现。 它需要校正法线(但可以是任何类型的“引导”表面法线)、估计的镜面反射蒙版、偏振图像、光源和相机矩阵。 它估计物体的反照率和深度。 工具 安装OpenGM请参考,或通过以下命令(仅支持pyt

文件下载

资源详情

[{"title":"( 42 个子文件 33.28MB ) matlabkinect代码-CVPR2019:偏振深度+RGB立体对","children":[{"title":"CVPR2019-master","children":[{"title":"NormalCorrection","children":[{"title":"Polarimetric_Stereo_Spec.py <span style='color:#111;'> 9.90KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"NormalCorrection.iml <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"remote-mappings.xml <span style='color:#111;'> 516B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 11.76KB </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 128B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"common","children":[{"title":"MatrixUtil.py <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"MatrixUtil.pyc <span style='color:#111;'> 5.58KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 141B </span>","children":null,"spread":false},{"title":"InfereMonitor.py <span style='color:#111;'> 953B </span>","children":null,"spread":false},{"title":"CoordinateUtil.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"CoordinateUtil.cpython-36.pyc <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"GeometryUtil.cpython-35.pyc <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"MatrixUtil.cpython-35.pyc <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"__init__.cpython-35.pyc <span style='color:#111;'> 137B </span>","children":null,"spread":false},{"title":"CoordinateUtil.cpython-35.pyc <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"GeometryUtil.cpython-36.pyc <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"ImageUtil.cpython-36.pyc <span style='color:#111;'> 749B </span>","children":null,"spread":false},{"title":"InfereMonitor.cpython-35.pyc <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"Synthetic.cpython-36.pyc <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"CoordinateUtil.pyc <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"InfereMonitor.pyc <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"horse_corrected_normal_Large.mat <span style='color:#111;'> 12.89MB </span>","children":null,"spread":false},{"title":"horse_disparity_median.mat <span style='color:#111;'> 6.16MB </span>","children":null,"spread":false},{"title":"horse_disparity_Large.mat <span style='color:#111;'> 23.98MB </span>","children":null,"spread":false},{"title":"horse_corrected_normal_median.mat <span style='color:#111;'> 3.22MB </span>","children":null,"spread":false}],"spread":true},{"title":"DepthEstimation","children":[{"title":"locu","children":[{"title":"PerspectiveNormal2.m <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"EstimateAlbedoGuideByCorrectedNspec2.m <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"LaplacianMatrix.m <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"rho_spec.m <span style='color:#111;'> 525B </span>","children":null,"spread":false},{"title":"JacobPattern.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"maskoffset.m <span style='color:#111;'> 455B </span>","children":null,"spread":false},{"title":"Depth2CloudPoint.m <span style='color:#111;'> 569B </span>","children":null,"spread":false},{"title":"GradientMatrix2.m <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"DisplayNormals.m <span style='color:#111;'> 277B </span>","children":null,"spread":false},{"title":"DepthGradient2.m <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"rho_diffuse.m <span style='color:#111;'> 740B </span>","children":null,"spread":false}],"spread":false},{"title":"Step3_depthEstimation.m <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"Illustration.png <span style='color:#111;'> 944.23KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明