用卷积滤波器matlab代码-deep_em_classifier:一维CNN-BLSTM模型的眼动分类

上传者: 38627521 | 上传时间: 2021-08-28 21:10:33 | 文件大小: 1.2MB | 文件类型: ZIP
用卷积滤波器matlab代码深眼运动(EM)分类器:一维CNN-BLSTM模型 这是“ 1D CNN和BLSTM对注视,扫视和平滑追踪的自动分类”一文中对眼睛运动分类的深度学习方法的实现。 如果您使用此代码,请引用为 @Article{startsev2018cnn, author="Startsev, Mikhail and Agtzidis, Ioannis and Dorr, Michael", title="1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits", journal="Behavior Research Methods", year="2018", month="Nov", day="08", issn="1554-3528", doi="10.3758/s13428-018-1144-2", url="https://doi.org/10.3758/s13428-018-1144-2" } 全文可通过随意访问。 作者: Mikhail

文件下载

资源详情

[{"title":"( 30 个子文件 1.2MB ) 用卷积滤波器matlab代码-deep_em_classifier:一维CNN-BLSTM模型的眼动分类","children":[{"title":"deep_em_classifier-master","children":[{"title":"figures","children":[{"title":"performance_vs_context.png <span style='color:#111;'> 95.17KB </span>","children":null,"spread":false},{"title":"performance_all.png <span style='color:#111;'> 74.36KB </span>","children":null,"spread":false},{"title":"num_dense.png <span style='color:#111;'> 43.09KB </span>","children":null,"spread":false},{"title":"num_conv.png <span style='color:#111;'> 46.03KB </span>","children":null,"spread":false},{"title":"dense_units.png <span style='color:#111;'> 36.72KB </span>","children":null,"spread":false},{"title":"num_blstm.png <span style='color:#111;'> 48.52KB </span>","children":null,"spread":false},{"title":"blstm_vs_lstm.png <span style='color:#111;'> 4.62MB </span>","children":null,"spread":false},{"title":"performance_ours.png <span style='color:#111;'> 32.69KB </span>","children":null,"spread":false},{"title":"network.png <span style='color:#111;'> 106.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"feature_extraction","children":[{"title":"AnnotateDataAll.m <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"arff_utils","children":[{"title":"AddAttArff.m <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"LoadArff.m <span style='color:#111;'> 4.20KB </span>","children":null,"spread":false},{"title":"IsNomAttribute.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"GetAttPositionArff.m <span style='color:#111;'> 946B </span>","children":null,"spread":false},{"title":"GetAcceleration.m <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"GetVelocity.m <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"GetNomAttValue.m <span style='color:#111;'> 867B </span>","children":null,"spread":false},{"title":"SaveArff.m <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"AnnotateData.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"blstm_model.py <span style='color:#111;'> 63.36KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"blstm_model_run.py <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 14.82KB </span>","children":null,"spread":false},{"title":"example_data","children":[{"title":"output.arff <span style='color:#111;'> 741.58KB </span>","children":null,"spread":false},{"title":"model.h5 <span style='color:#111;'> 179.64KB </span>","children":null,"spread":false},{"title":"input.arff <span style='color:#111;'> 150.62KB </span>","children":null,"spread":false},{"title":"features.arff <span style='color:#111;'> 666.45KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 776B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明