具有增量学习能力的智能孤岛检测方法

上传者: 38627234 | 上传时间: 2022-03-15 10:50:55 | 文件大小: 2.29MB | 文件类型: -
基于机器学习的智能孤岛检测方法能有效地提高防孤岛保护的性能,但现有方法皆采用离线学习方案,对配电网因运行条件变化而导致的概念漂移现象缺乏自适应性。提出了一种具有在线增量学习能力的孤岛检测方法。首先,提出利用保护自采数据以及数据采集与监视控制(SCADA)系统采集的开关状态构成原始样本,并基于增量聚类方法进行样本筛选,实现有效样本的在线积累;然后,以各子样本集对系统最新状况的分类性能作为竞争准则,提出了一种样本集的优选方法,并利用加权支持向量机完成了增量学习。仿真结果表明,所提方法能够自主探测概念漂移的发生并进行持续的学习,有效地提高了孤岛检测的准确性和自适应性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明