基于模糊粗糙集依赖度的两步属性约简方法 (2013年)

上传者: 38625464 | 上传时间: 2023-04-05 21:13:13 | 文件大小: 422KB | 文件类型: PDF
为获取连续属性值数据集的最小属性子集,提出了一种两步约简方法.该方法以模糊粗糙集模型为基础,将描述条件属性和决策属性依赖关系的模糊依赖度概念进行了扩展,使其能对条件属性之间的依赖关系进行度量,利用属性与类别之间的依赖度选出候选属性集,然后根据单个属性与类别和属性之间的依赖度对候选属性集进行约简.仿真结果表明,该方法在有效降低属性维数的同时一定程度上保证了分类正确率.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明