基于YOLOv3和视觉SLAM的语义地图构建

上传者: 38618094 | 上传时间: 2021-07-05 19:59:25 | 文件大小: 7.92MB | 文件类型: PDF
以相机作为输入的视觉同时定位与建图(SLAM)系统在地图构建过程中虽然可以保留点云的空间几何信息,但是并没有完全利用环境中物体的语义信息。针对这个问题,对当前主流视觉SLAM系统和基于Faster R-CNN、YOLO等神经网络结构的目标检测算法进行研究。并提出一种有效的点云分割方法,该方法引入支撑平面以提升分割结果的鲁棒性。最后在ORB-SLAM系统的基础上,结合YOLOv3算法进行环境场景的物体检测并保证构建的点云地图具有语义信息。实验结果表明,所提方法可以构建几何信息复杂的语义地图,从而可应用于无人车或机器人的导航工作中。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明