em算法matlab代码-GP-SSM:高斯过程状态空间模型

上传者: 38617615 | 上传时间: 2021-10-31 19:37:39 | 文件大小: 2KB | 文件类型: -
em算法matlab代码GP-SSM 高斯过程状态空间模型 介绍 这个Matlab工具箱实现了基于高斯过程学习(即识别)非线性动力学系统的状态空间模型的算法。 提议的方法有一些优点: 用户无需给出系统动力学的参数形式。 通过选择协方差函数来介绍关于动力学函数的平滑度的假设(请参阅Rasmussen和Williams的第4章,高斯机器学习过程,2006年)。 模型的复杂度和拟合度会自动进行权衡。 模型预测上的误差棒捕获由于数据稀缺或模棱两可而引起的不确定性。 特别是,此工具箱实现了以下两篇论文的算法: [1] R. Frigola,F。Lindsten,TBSchön和CE Rasmussen。 使用粒子MCMC的高斯过程状态空间模型中的贝叶斯推理和学习,神经信息处理系统(NIPS),2013年。 [2] R. Frigola,F。Lindsten,TBSchön和CE Rasmussen。 使用粒子随机近似EM识别高斯过程状态空间模型,2013年,已提交。 第一步 重要信息: GP-SSM代码需要机器学习的高斯过程(GPML)工具箱,该工具箱可在此处免费提供: 您需要运行两个不同的st

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明