基于Python的改进关键词提取算法的实现

上传者: 38617604 | 上传时间: 2022-03-06 15:04:53 | 文件大小: 1.61MB | 文件类型: -
关键词提取是自然语言研究领域的基础和关键点,在很多领域都有广泛的应用。以本校图书馆提供的8045篇《红色中华》新闻为源数据,首先对数据进行数据清理,去除其中的噪声数据,然后对每篇新闻进行数据结构解析,在解析的基础上计算了词语的TFIDF权重、词位置权重、词性权重、词长权重和词跨度权重,综合考虑这些权重计算出词语的综合权重,以综合权重最大的前8个词语作为新闻的关键词。从准确度、召回率及F1值3个指标对改进算法、经典的TFIDF算法和专家标注进行对比,发现改进算法在3个指标上均优于经典的TFIDF算法,与专家标注比较接近,值得推广应用。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明