[{"title":"( 29 个子文件 1.24MB ) matlab均方误差的代码-PML:轮廓最大似然(PML)近似值","children":[{"title":"PML-master","children":[{"title":".github","children":[{"title":"approx_PML.png <span style='color:#111;'> 27.89KB </span>","children":null,"spread":false},{"title":"approx_PML_performance_github.png <span style='color:#111;'> 663.30KB </span>","children":null,"spread":false},{"title":"PML_approximation.png <span style='color:#111;'> 12.62KB </span>","children":null,"spread":false},{"title":"eq.png <span style='color:#111;'> 29.97KB </span>","children":null,"spread":false},{"title":"approx_PML_performance_L1_distance_github.png <span style='color:#111;'> 396.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"python","children":[{"title":"pml.py <span style='color:#111;'> 9.40KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 652B </span>","children":null,"spread":false}],"spread":true},{"title":"matlab","children":[{"title":"PMLdistributionApproximate.m <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"renyiEntropyOfDistribution.m <span style='color:#111;'> 235B </span>","children":null,"spread":false},{"title":"estimate_support_from_sample_PML_approximate.m <span style='color:#111;'> 760B </span>","children":null,"spread":false},{"title":"estEntroPMLapproximate.m <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"int_hist.m <span style='color:#111;'> 322B </span>","children":null,"spread":false},{"title":"estimate_L1_distance_from_uniform_given_histogram_PML_approx.m <span style='color:#111;'> 939B </span>","children":null,"spread":false},{"title":"estimate_support_from_histogram_PML_approximate.m <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"estRenyiEntroPMLapproximate.m <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"ML_unseen_symbols_uniform.m <span style='color:#111;'> 689B </span>","children":null,"spread":false},{"title":"maximize_on_interval_int.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"entropyOfDistribution.m <span style='color:#111;'> 237B </span>","children":null,"spread":false},{"title":"harmonic_number.m <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"estimate_L1_distance_from_uniform_given_histogram_valiant.m <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"DrawFromMultinomial.m <span style='color:#111;'> 457B </span>","children":null,"spread":false},{"title":"DrawHistogramFromNamedDistribution.m <span style='color:#111;'> 4.01KB </span>","children":null,"spread":false},{"title":"estimate_L1_distance_from_uniform_given_histogram_MLE.m <span style='color:#111;'> 691B </span>","children":null,"spread":false}],"spread":false},{"title":"julia","children":[{"title":"PML_.jl <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"performance_tests","children":[{"title":"num_clumps.ipynb <span style='color:#111;'> 212.94KB </span>","children":null,"spread":false},{"title":"make_plot_L1_distance_from_uniform_test_v3.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"get_data_L1_distance_from_uniform_test_v3.m <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]