矩阵对策Matlab代码-L2RPN-using-A3C:使用Actor-Critic框架进行L2RPN挑战的强化学习(https://l2r

上传者: 38613154 | 上传时间: 2022-05-21 12:56:16 | 文件大小: 44.1MB | 文件类型: ZIP
矩阵指针Matlab代码L2RPN-使用-A3C 使用 Actor-Critic 框架进行 L2RPN 挑战 ( & ) 的强化学习。 使用此代码训练的代理是挑战的获胜者之一。 代码使用pypownet环境()。 该代码是在 LGPLv3 许可下发布的。 要求 Python >= 3.6 凯拉斯 pypownet 虚拟环境 (conda/venv) 推荐 Pypownet 安装和文档: 文件说明 PDF文件 Amar_L2RPN_IJCNN_git.pdf - 在 IJCNN-2019 的 L2RPN 研讨会上介绍该方法。 总结方法和培训方法中的想法。 Numpy 文件 valid_actions_array_uniq.npz - 有效唯一动作矩阵 valid_actions_masking_subid_perm.npz - 将变电站 Id 映射到用于屏蔽参与者输出的唯一有效动作的矩阵 Python文件 valid_switching_controls.py - 创建上述 numpy 文件的 python 文件 pypow_14_a3c_final.py - 用于使用 A3C 训练演员

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明