上传者: 38612568
|
上传时间: 2021-04-22 12:08:18
|
文件大小: 896KB
|
文件类型: PDF
为了提高基于群体智能的粗糙集最小属性约简算法的求解质量和计算效率,提出一个结合长期记忆禁忌搜索方法的粒子群并行子群优化算法.并行的各子群不仅具有禁忌约束,而且包含多样性和增强性策略.由于并行的子群共同陷入局部最优的概率小于一个粒子群陷入局部最优的概率,该算法可提高获得全局最优的可能性,并减少受初始粒子群体的影响.多个UC I数据集的实验计算表明,提出的算法相对于其他的属性约简算法具有更高的概率搜索到最小粗糙集约简.因此所提出的算法用于求解最小属性约简问题是可行和较为有效的.