基于减法聚类改进的模糊c-均值算法的模糊聚类研究

上传者: 38612568 | 上传时间: 2021-10-19 13:33:42 | 文件大小: 309KB | 文件类型: -
针对模糊c-均值(FCM)聚类算法受初始聚类中心影响,易陷入局部最优,以及算法对孤立点数据敏感的问题,提出了解决方案:采用快速减法聚类算法初始化聚类中心,为每个样本点赋予一个定量的权值,用来区分不同的样本点对最终的聚类结果的不同作用,为提高聚类速度采用修正隶属度矩阵的方法,并将算法与传统的FCM相比。实验结果表明,该算法较好地解决了初值问题,与随机初始化方法相比,迭代次数少、收敛速度快、具有较好的聚类结果。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明