TensorFlow2.0(十)–实现深度可分离卷积神经网络

上传者: 38612095 | 上传时间: 2021-07-01 11:00:11 | 文件大小: 1012KB | 文件类型: PDF
深度可分离卷积神经网络1. 深度可分离卷积网络介绍1. 1 深度可分离卷积网络与普通卷积网络1.2 普通卷积与深度可分离卷积计算量对比2. 深度可分离卷积网络实现2.1 导入相应的库2.2 数据集的加载与处理2.3 构建模型2.4 2.4 模型的编译与训练2.5 学习曲线绘制2.6 模型验证 1. 深度可分离卷积网络介绍 1. 1 深度可分离卷积网络与普通卷积网络 深度可分离卷积神经网络是卷积神经网络的一个变种,可以对卷积神经网络进行替代。对于普通的卷积申请网络,如下图左边部分所示,由卷积层,批归一化操作与激活函数构成的。对于深度可分离卷积网络,它是由一个3×3深度可分离的卷积层,批归一化,

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明