基于NSST和改进数学形态学的遥感图像目标边缘提取

上传者: 38611388 | 上传时间: 2021-03-15 10:24:09 | 文件大小: 1.04MB | 文件类型: PDF
为了从遥感图像中提取出更为准确完整的目标边缘,提出一种基于无下采样Shearlet 模极大值和改进数学形态学的目标边缘提取方法。首先采用无下采样 Shearlet 变换(NSST)将图像分解成边缘细节丰富的高频分量和边缘细节较少的低频分量;然后结合不同分解程度下边缘像素点处的系数关系,对高频分量的各个子带进行模极大值检测,再经过双层掩膜筛选后得到高频边缘提取结果;对低频分量采用改进的数学形态学方法,得到低频边缘提取结果;最后将上述两部分融合,使用区域连通方法去除孤立点,得到最终的目标边缘图像。大量实验结果表明,与 Canny 以及其他 4 种同类边缘提取方法相比,本文方法所得边缘定位准确、完整清晰、细节丰富,且抗噪能力强,为后续遥感图像目标特征提取与识别奠定更好基础。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明