基于超像素特征与SVM分类的人员安全帽分割方法-论文

上传者: 38610052 | 上传时间: 2022-05-23 20:17:13 | 文件大小: 7.68MB | 文件类型: PDF
安全帽分割是实现煤矿人员智能视频监控的关键技术之一,可促进人员定位、跟踪、安全帽佩戴检测等相关技术的研究,为此,提出一种基于超像素特征提取与支持向量机(Support Vector Machines,SVM)分类的矿井人员安全帽分割方法。首先,采用简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)模型将人员图像粒化为一定数量内部像素点颜色特征相似且空间位置相近的超像素。其次,提取超像素在RGB,YCbCr,Lab,HSV空间上的颜色特征及其灰度直方图纹理特征,通过分析安全帽二维轮廓线上的斜率变化特性建立安全帽轮廓特征模型。最后,在训练集人员图像中分别提取安全帽正样本超像素和背景负样本超像素的颜色、纹理特征训练SVM分类器,采用已训练的SVM将测试集中的人员图像超像素二分类为安全帽正样本和背景负样本。进一步通过安全帽轮廓特征模型判别SVM误分类的虚假正样本并对其进行类别修正,识别同时包含正样本像素点和负样本像素点的欠分割样本超像素,并通过求取正样本区域边界掩模与Prewitt算子所提取轮廓的差集对其进行二级像素分类,分离出其中的正样本像素区

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明