具有重建损失的改进型生成对抗网络

上传者: 38609571 | 上传时间: 2021-11-08 19:40:25 | 文件大小: 1.53MB | 文件类型: -
我们提出了一个简单的正则化方案来处理生成对抗网络(GAN)中的模式缺失和训练不稳定的问题。 关键思想是利用鉴别器学习到的视觉特征。 我们通过向生成器提供由鉴别器提取的真实数据特征来重建真实数据。 将重建损失添加到GAN的目标函数中,以强制生成器可以根据鉴别器的特征进行重建,这有助于明确指导生成器朝着接近实际数据的可能配置进行。 所提出的重建损失提高了GAN的性能,在不同的数据集上产生了更高质量的图像,并且可以轻松地与其他正则化损失函数(例如梯度罚分)组合以提高各种GAN的性能。 我们对不同数据集上广泛采用的DCGAN体系结构和复杂的ResNet体系结构进行了实验,结果表明了该方法的有效性和鲁棒性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明