基于YOLOV3改进的实时车辆检测方法

上传者: 38607552 | 上传时间: 2021-06-04 19:42:47 | 文件大小: 1.93MB | 文件类型: PDF
针对原始YOLOV3目标检测算法在车辆检测任务中存在的实时性不高的问题,提出了一种改进的车辆检测模型。该模型使用反残差网络作为基础特征提取层,以减少参数量,降低计算复杂度,解决梯度消失和梯度爆炸问题。并且使用组归一化降低批量大小对模型准确性的影响,同时用软化非极大值抑制降低漏检率,使用Focal-loss改进损失函数,使模型在训练时聚焦于难分类样本。改进后的模型参数量为YOLOV3的36.23%,每帧检测时间较YOLOV3降低了13.8 ms,平均类别精度提高了1.15%。结果表明,本文算法兼顾实时性和准确性,为车辆的实时性检测提供参考。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明