matlab微分方程代码-mrst-pytorch:将MRST移植到PyTorch的概念证明

上传者: 38606897 | 上传时间: 2023-12-12 23:18:46 | 文件大小: 1.2MB | 文件类型: ZIP
matlab微分方程代码自述文件 GPU加速用于MRST(概念验证) 我今天(12月5日)开始进行评估和概念验证,以移植Matlab油藏模拟器以加速行驶。 部分工作需要SPE论文中的Eclipse数据集进行测试。 MRST。 我已将最重要的数据集上载到其自己的存储库中。 请参阅下面的参考。 由于PyTorch具有与GPU或GPU配合使用的内置功能,因此我们希望证明基于GPU的PyTorch可大大减少油藏模拟中的计算时间。 简而言之,这就是想法。 背景 少数科学家已经将他们的一些工作移植到了这种ML框架上,但是没有专门针对油藏模拟进行研究。 战略 测试构成MRST求解器核心的偏微分方程(PDE)。 使用Matlab和Octave测试求解器的运行时间。 最新书的作者提供了一些性能测试代码(请参阅附录)。 使用PyTorch for GPU复制Python中的功能。 将Matlab代码转换为PyTorch; 测量MRST求解器的计算时间。 如果在PyTorch中GPU的计算速度快10到100,则继续将更多的Matlab代码转换为基于PyTorch张量的计算。 感谢您的集思广益。 更新 已经有

文件下载

资源详情

[{"title":"( 62 个子文件 1.2MB ) matlab微分方程代码-mrst-pytorch:将MRST移植到PyTorch的概念证明","children":[{"title":"mrst-pytorch-master","children":[{"title":".gitignore <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"r-to-matlab","children":[{"title":"read_from_matlab_file.Rmd <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"demo.Rmd <span style='color:#111;'> 856B </span>","children":null,"spread":false},{"title":"demo.nb.html <span style='color:#111;'> 659.21KB </span>","children":null,"spread":false},{"title":"read_from_matlab_file.nb.html <span style='color:#111;'> 662.06KB </span>","children":null,"spread":false},{"title":"r-to-matlab.Rproj <span style='color:#111;'> 205B </span>","children":null,"spread":false},{"title":"notes.md <span style='color:#111;'> 528B </span>","children":null,"spread":false},{"title":"midpoint.m <span style='color:#111;'> 743B </span>","children":null,"spread":false}],"spread":true},{"title":"jacobian-cpu","children":[{"title":"Jacobian-matrix-examples.ipynb <span style='color:#111;'> 19.21KB </span>","children":null,"spread":false},{"title":"tensorflow_pytorch_weights.9001.ipynb <span style='color:#111;'> 39.84KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"tensorflow_pytorch_weights.9000.ipynb <span style='color:#111;'> 58.82KB </span>","children":null,"spread":false},{"title":"Jacobian-matrix-examples-tf.ipynb <span style='color:#111;'> 21.30KB </span>","children":null,"spread":false},{"title":"tensorflow_pytorch_weights.9002.ipynb <span style='color:#111;'> 40.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.assets","children":[{"title":"image-20191222110513683.png <span style='color:#111;'> 115.08KB </span>","children":null,"spread":false},{"title":"image-20191222110339257.png <span style='color:#111;'> 180.84KB </span>","children":null,"spread":false},{"title":"image-20191222104821690.png <span style='color:#111;'> 141.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"solving-PDEs","children":[{"title":"solving_PDE.md <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"README.md <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"tensorflow_tests.py <span style='color:#111;'> 737B </span>","children":null,"spread":false}],"spread":true},{"title":"environment.yml <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"README.md <span style='color:#111;'> 20B </span>","children":null,"spread":false}],"spread":true},{"title":"dev","children":[{"title":"another_torch_summary.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 198B </span>","children":null,"spread":false},{"title":"torchsummary.py <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"tmp","children":[{"title":"explicit_env.txt <span style='color:#111;'> 10.29KB </span>","children":null,"spread":false},{"title":"environment_newest.yml <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"environment_long.yml <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"z.sandbox","children":[{"title":"02-PyTorch Autograd.ipynb <span style='color:#111;'> 13.83KB </span>","children":null,"spread":false},{"title":"32-fluidsim.ipynb <span style='color:#111;'> 10.33KB </span>","children":null,"spread":false},{"title":"cuda semantics.ipynb <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"measure_average_time_execution.ipynb <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"Buckley-Leverett-with-autograd.ipynb <span style='color:#111;'> 48.97KB </span>","children":null,"spread":false},{"title":"99-backward_with_indices_on_y.ipynb <span style='color:#111;'> 6.92KB </span>","children":null,"spread":false},{"title":"21-compute Jacobians with PyTorch.ipynb <span style='color:#111;'> 16.17KB </span>","children":null,"spread":false},{"title":"compute_gradients.png <span style='color:#111;'> 74.35KB </span>","children":null,"spread":false},{"title":"jacobian-matrix-pytorch_sequential.ipynb <span style='color:#111;'> 25.39KB </span>","children":null,"spread":false},{"title":"01-backward function in PyTorch.ipynb <span style='color:#111;'> 10.82KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"04-plotting derivatives using PyTorch.ipynb <span style='color:#111;'> 77.99KB </span>","children":null,"spread":false},{"title":"31-plot Autograd error.ipynb <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"30-tests of Jacobians with autograd.ipynb <span style='color:#111;'> 32.06KB </span>","children":null,"spread":false},{"title":"03-why we get errors with simple derivatives - PyTorch.ipynb <span style='color:#111;'> 12.81KB </span>","children":null,"spread":false}],"spread":false},{"title":"jacobian-gpu","children":[{"title":"README.md <span style='color:#111;'> 274B </span>","children":null,"spread":false}],"spread":true},{"title":"jacobians-octave","children":[{"title":"run_complexstep.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"run_myjacobian.m <span style='color:#111;'> 439B </span>","children":null,"spread":false},{"title":"run_numerical_jacobian.m <span style='color:#111;'> 595B </span>","children":null,"spread":false},{"title":"run_NumJacob.m <span style='color:#111;'> 517B </span>","children":null,"spread":false},{"title":"run_complexstep_direct.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"run_fdjacobian.m <span style='color:#111;'> 477B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"jacobian_linear.m <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"NumJacob","children":[{"title":"demo2.m <span style='color:#111;'> 33B </span>","children":null,"spread":false},{"title":"NumJacob.m <span style='color:#111;'> 672B </span>","children":null,"spread":false},{"title":"test_func.m <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"test_func2.m <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"demo.m <span style='color:#111;'> 37B </span>","children":null,"spread":false}],"spread":false},{"title":"notes.assets","children":[{"title":"image-20191208091753167.png <span style='color:#111;'> 26.21KB </span>","children":null,"spread":false},{"title":"image-20191208091905370.png <span style='color:#111;'> 17.33KB </span>","children":null,"spread":false},{"title":"image-20191205133333494.png <span style='color:#111;'> 65.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"simple_jacobian.m <span style='color:#111;'> 134B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明