基于深度学习目标检测与跟踪技术的研究

上传者: 38606811 | 上传时间: 2021-11-16 16:22:15 | 文件大小: 1.58MB | 文件类型: -
目标的检测与跟踪技术在计算机视觉领域有着广泛的应用,比如在视频监控,无人驾驶,机器人等领域都有着举足轻重的价值。随着深度学习算法与技术的飞速发展,更是带动了该技术在性能、速度等方面取得了质的飞跃。然而随着社会的发展,需求的不断提高,我们在研究算法高效性的同时还要考虑算法所训练出的模型在实际应用上的性能与速度。本篇文章主要研究基于深度学习的目标检测与跟踪技术,该技术主要包括一个离线训练的检测模型,一个优化的跟踪器,以及一个学习模块来组成在线跟踪系统。通过研究出一种更快、性能更好的算法以及模型的压缩来达到使其训练出的模型在手机等嵌入式设备上实时运行的目的。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明