matlab对比实验代码-pGAN-cGAN:肝癌

上传者: 38605604 | 上传时间: 2022-09-04 17:57:19 | 文件大小: 150.39MB | 文件类型: ZIP
matlab对比实验代码pGAN和cGAN 这些技术(pGAN和cGAN)在论文中进行了描述: Dar SUH,Yurt M,Karancan L,Erdem A,Erdem E,ÇukurT.使用条件生成对抗网络的多对比度MRI中的图像合成。 IEEE医学影像交易。 2019。 演示版 以下命令在IXI数据集中的图像上训练和测试用于T1到T2合成的pGAN和cGAN模型。 可以从上下载注册的培训和测试科目的数据集。 复制当前目录中的“数据集”文件夹。 预训练的pGAN和cGAN模型也出现在checkpoints目录中。 要在其他数据集上运行代码,请创建一个名为“ data.mat”的文件以进行训练,测试和验证样本,并将其放置在其相应的目录(数据集/您的数据/火车,测试,val)中。 “ data.mat”应包含名为data_x的变量(用于源对比度)和名为data_y的变量(用于目标对比度)。 如果您是通过Matlab创建“ data.mat”文件,请确保尺寸(1、2、3、4)对应于(相邻切片,样本数量,x尺寸,y尺寸)。 如果要通过python保存文件,则转置尺寸。 另外,请确保每个

文件下载

资源详情

[{"title":"( 53 个子文件 150.39MB ) matlab对比实验代码-pGAN-cGAN:肝癌","children":[{"title":"pGAN-cGAN-master","children":[{"title":"pGAN.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":"pGAN_run","children":[{"title":"opt.txt <span style='color:#111;'> 602B </span>","children":null,"spread":false},{"title":"latest_net_D.pth <span style='color:#111;'> 10.56MB </span>","children":null,"spread":false},{"title":"loss_log.txt <span style='color:#111;'> 262.53KB </span>","children":null,"spread":false},{"title":"latest_net_G.pth <span style='color:#111;'> 43.43MB </span>","children":null,"spread":false}],"spread":true},{"title":"cGAN_run","children":[{"title":"opt.txt <span style='color:#111;'> 600B </span>","children":null,"spread":false},{"title":"latest_net_D_B.pth <span style='color:#111;'> 10.55MB </span>","children":null,"spread":false},{"title":"latest_net_D_A.pth <span style='color:#111;'> 10.55MB </span>","children":null,"spread":false},{"title":"loss_log.txt <span style='color:#111;'> 270.06KB </span>","children":null,"spread":false},{"title":"latest_net_G_A.pth <span style='color:#111;'> 43.41MB </span>","children":null,"spread":false},{"title":"latest_net_G_B.pth <span style='color:#111;'> 43.41MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"models","children":[{"title":"pgan_model.py <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 812B </span>","children":null,"spread":false},{"title":"cgan_model.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"test_model.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"pgan_model.pyc <span style='color:#111;'> 7.70KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 643B </span>","children":null,"spread":false},{"title":"base_model.pyc <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"pGAN_model.pyc <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"cgan_model.pyc <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"pix2pix_model_perceptual.pyc <span style='color:#111;'> 7.00KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"cycle_gan_model.pyc <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false},{"title":"networks.pyc <span style='color:#111;'> 12.48KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 12.17KB </span>","children":null,"spread":false}],"spread":false},{"title":"util","children":[{"title":"util.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"util.pyc <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 103B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"visualizer.pyc <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false},{"title":"html.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"image_pool.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"visualizer.py <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false},{"title":"html.pyc <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"image_pool.pyc <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"environment.yml <span style='color:#111;'> 249B </span>","children":null,"spread":false},{"title":"options","children":[{"title":"train_options.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 106B </span>","children":null,"spread":false},{"title":"train_options.pyc <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"base_options.pyc <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"test_options.py <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"test_options.pyc <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"cGAN.py <span style='color:#111;'> 4.01KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"base_data_loader.pyc <span style='color:#111;'> 698B </span>","children":null,"spread":false},{"title":"__init__.pyc <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"base_dataset.pyc <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"base_dataset.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"base_data_loader.py <span style='color:#111;'> 171B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明