MATLAB用拟合出的代码绘图-Chemotacticswarming:趋化变暖

上传者: 38605590 | 上传时间: 2021-07-01 19:12:15 | 文件大小: 35.04MB | 文件类型: ZIP
MATLAB用拟合出的代码绘图趋化变暖 目录 简介和背景 该分析在学术文章(当前正在出版)中有详细描述: Detection and characterisation of chemotactic swarming without cell tracking. Jack D. Hywood, Gregory Rice, Sophie V. Pageon, Mark N. Read, Maté Biro. Chemotacticswarming可以用来分析执行随机行走的运动“媒介”系统,它将群体的集体运动分解为定向运动(趋化性)和扩散成分。 我们在此处提供了该方法的实现以及示例数据,因此您可以了解如何继续使用自己的方法(下面有更多详细信息)。 这是我们方法的两个主要优点: 您无需可视化趋化因子场/因子/分子。 这很难做到,任何努力都可能会破坏特工的行动。 您无需在时间范围之间跟踪各个业务代表。 我们的分析仅需要代理人职位,我们不需要知道哪个代理人是哪个。 对我们的方法有一些关键的假设/限制。 该分析假设一个圆形环境(我们称为R ),并且针对中心分析了趋化性。 我们期望与圆形几何形状的微小

文件下载

资源详情

[{"title":"( 21 个子文件 35.04MB ) MATLAB用拟合出的代码绘图-Chemotacticswarming:趋化变暖","children":[{"title":"Chemotacticswarming-main","children":[{"title":"Analysis.R <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"FunEstim_var.R <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.31KB </span>","children":null,"spread":false},{"title":"Prelim.R <span style='color:#111;'> 15.23KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 32.21KB </span>","children":null,"spread":false},{"title":"Data","children":[{"title":"RandWalk","children":[{"title":"Attraction_const","children":[{"title":"seed2","children":[{"title":"distances.csv <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false}],"spread":true},{"title":"Attraction_const.R <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"seed3","children":[{"title":"distances.csv <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false}],"spread":true},{"title":"Attraction_const_plots.R <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"seed1","children":[{"title":"distances.csv <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Attraction_var","children":[{"title":"Attraction_var_plots.R <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"Attraction_var.R <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"distances.csv <span style='color:#111;'> 5.53MB </span>","children":null,"spread":false}],"spread":true},{"title":"Unbiased","children":[{"title":"seed2","children":[{"title":"distances.csv <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false}],"spread":true},{"title":"seed3","children":[{"title":"distances.csv <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false}],"spread":true},{"title":"Unbiased_plots.R <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"seed1","children":[{"title":"distances.csv <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false}],"spread":false},{"title":"Unbiased.R <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Preembedcognate","children":[{"title":"distances.csv <span style='color:#111;'> 46.23MB </span>","children":null,"spread":false}],"spread":true},{"title":"Noncognate","children":[{"title":"distances.csv <span style='color:#111;'> 20.44MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"FunEstim_const.R <span style='color:#111;'> 8.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明