上传者: 38600696
|
上传时间: 2026-02-22 22:23:01
|
文件大小: 894KB
|
文件类型: PDF
小面积估算(SAE)解决了为小面积(即样本信息不足以保证使用直接估算器的总体人口子集)提供可靠估算的问题。 与传统的SAE模型相比,分层SAE问题的贝叶斯方法具有多个优点,包括能够适当考虑所调查变量的类型。 在本文中,讨论了许多用于估计小面积计数的模型规范,并说明了它们的相对优点。 我们进行了模拟研究,以简化的形式复制了《意大利劳动力调查》,并以当地劳动力市场为目标区域。 通过假设感兴趣的人口特征以及已知的调查抽样设计来生成模拟数据。 在一组实验中,利用了人口普查数据中的就业/失业人数,而另一些则改变了人口特征。 结果表明,对于某些标准Fay-Herriot规范以及具有(对数)正常采样级的广义线性Poisson模型,模型持续存在故障,而无匹配或非正常采样级模型在偏差,准确性和可靠性方面均具有最佳性能。 不过,该研究还发现,通过随机确定采样方差而不是像通常的做法那样假设抽样方差,任何模型都可以显着改善其性能。 此外,我们解决了模型确定的问题,以指出在SAE上下文中对模型选择和检查常用标准的限制和可能的欺骗。