计数小面积估计的多层贝叶斯模型的比较

上传者: 38600696 | 上传时间: 2026-02-22 22:23:01 | 文件大小: 894KB | 文件类型: PDF
小面积估算(SAE)解决了为小面积(即样本信息不足以保证使用直接估算器的总体人口子集)提供可靠估算的问题。 与传统的SAE模型相比,分层SAE问题的贝叶斯方法具有多个优点,包括能够适当考虑所调查变量的类型。 在本文中,讨论了许多用于估计小面积计数的模型规范,并说明了它们的相对优点。 我们进行了模拟研究,以简化的形式复制了《意大利劳动力调查》,并以当地劳动力市场为目标区域。 通过假设感兴趣的人口特征以及已知的调查抽样设计来生成模拟数据。 在一组实验中,利用了人口普查数据中的就业/失业人数,而另一些则改变了人口特征。 结果表明,对于某些标准Fay-Herriot规范以及具有(对数)正常采样级的广义线性Poisson模型,模型持续存在故障,而无匹配或非正常采样级模型在偏差,准确性和可靠性方面均具有最佳性能。 不过,该研究还发现,通过随机确定采样方差而不是像通常的做法那样假设抽样方差,任何模型都可以显着改善其性能。 此外,我们解决了模型确定的问题,以指出在SAE上下文中对模型选择和检查常用标准的限制和可能的欺骗。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明