matlab代码影响-CharAnalysis:沉积物-炭分析的诊断和分析工具

上传者: 38600432 | 上传时间: 2023-04-06 04:26:17 | 文件大小: 1.54MB | 文件类型: ZIP
matlab代码影响CharAnalysis :用于沉积物-炭分析的诊断和分析工具 CharAnalysis是用于分析沉积物-炭记录的程序,当目标是检测峰值以重建“局部”火灾历史时。 诊断工具可帮助确定是否需要进行峰检测,如果需要,则最合理的参数是什么。 分析工具有助于以统计和图形方式总结结果。 整个代码已分发,并且注释良好。 鼓励用户“深入了解”,了解正在发生的事情,并修改程序以适合个人需求。 (c)2004-2021年 菲利普·希格拉(Philip Higuera)教授 生态与保护科学系 蒙大拿大学 美国密苏里州米苏拉 使用本网站 ### Downloads单击此页面上的相应图标,以.zip或tar.gz存档的形式下载整个CharAnalysis程序。 或者,通过访问GitHub页面下载单个文件。 要查看程序的较早版本(2014年4月之前),请访问Google Code。 ###更新和注释更新在“ Wiki”选项卡中进行了描述,标题包括“ CharAnalysisUpdate”。 如果您有Gmail登录,也可以在Wiki页面上留下评论。有关使用常规CharAnalysis.user

文件下载

资源详情

[{"title":"( 35 个子文件 1.54MB ) matlab代码影响-CharAnalysis:沉积物-炭分析的诊断和分析工具","children":[{"title":"CharAnalysis-master","children":[{"title":"CO_charData.csv <span style='color:#111;'> 11.26KB </span>","children":null,"spread":false},{"title":"CharAnalysis_1_1_MATLAB","children":[{"title":"CharParameters.m <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"CharPeakAnalysisResults_conPDF.m <span style='color:#111;'> 43.87KB </span>","children":null,"spread":false},{"title":"MStep.m <span style='color:#111;'> 923B </span>","children":null,"spread":false},{"title":"bkgCharSensitivity.m <span style='color:#111;'> 8.22KB </span>","children":null,"spread":false},{"title":"CharPeakAnalysisResults.m <span style='color:#111;'> 45.16KB </span>","children":null,"spread":false},{"title":"CharThreshLocal.m <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false},{"title":"CharPretreatment.m <span style='color:#111;'> 11.73KB </span>","children":null,"spread":false},{"title":"smoothFRI.m <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"EStep.m <span style='color:#111;'> 843B </span>","children":null,"spread":false},{"title":"ClusterNormalize.m <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"AnDarksamtest.m <span style='color:#111;'> 20.59KB </span>","children":null,"spread":false},{"title":"CharAnalysis.m <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"EMIterate.m <span style='color:#111;'> 948B </span>","children":null,"spread":false},{"title":"inputwd.m <span style='color:#111;'> 271B </span>","children":null,"spread":false},{"title":"GMClassLikelihood.m <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"GaussianMixture.m <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"SplitClasses.m <span style='color:#111;'> 668B </span>","children":null,"spread":false},{"title":"outputResults.m <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"MDLReduceOrder.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"initMixture.m <span style='color:#111;'> 537B </span>","children":null,"spread":false},{"title":"CharSmooth.m <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"CharPeakID.m <span style='color:#111;'> 9.72KB </span>","children":null,"spread":false},{"title":"bkgCharSensitivity_conPDF.m <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"CharThreshGlobal.m <span style='color:#111;'> 9.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"templateChar.xls <span style='color:#111;'> 164.50KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.92KB </span>","children":null,"spread":false},{"title":"template_charParams.csv <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"index.html <span style='color:#111;'> 14.50KB </span>","children":null,"spread":false},{"title":"CO_charParams.csv <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"CharAnalysis_1_1_Windows","children":[{"title":"readme_CharAnalysis_standAlone.md <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"template_charData.csv <span style='color:#111;'> 83B </span>","children":null,"spread":false},{"title":"COchar.xls <span style='color:#111;'> 884.50KB </span>","children":null,"spread":false},{"title":"CO_charResults.csv <span style='color:#111;'> 521.27KB </span>","children":null,"spread":false},{"title":"CharAnalysis_UsersGuide.pdf <span style='color:#111;'> 1.40MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明